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This write-up is intended to introduce the reader to the Cantor set. The Cantor
set is defined as a subspace of R. We begin with its definition.
Intuitively, the Cantor set is constructed by first taking the interval I = [0, 1] inside
R and then removing the open middle third; then removing the open middle thirds
of each of the two remaining intervals; and continuing this process indefinitely. In
other words, at the nth step, we remove the open middle thirds from each of the n
intervals obtained from the n− 1st step.

Definition 0.1. We will denote the Cantor set C =
⋂∞

n=1 Cn where Cn are the
subsets C1 = [0, 1], C2 = [0, 1

3 ] ∪ [ 23 , 1], C3 = [0, 1
9 ] ∪ [ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1], · · · , Cn =

Cn−1

3 ∪ ( 2
3 + Cn−1

3 ), · · ·

Here the notation S
n for a subset S of R denotes the set {x ∈ R : ∃s ∈

S such that x = s
n .

The Cantor set has many surprising properties as a topological space. It is,
among other things, uncountable, compact, metrizable and totally disconnected.
Because of these properties, the space serves as an interesting counterexample to
many naive conjectures in topology. For instance, it is a counterexample to the fol-
lowing natural conjecture, whose converse is obviously true: if a topological space
X is totally disconnected, then it has the discrete topology.

Definition 0.2. A space is totally disconnected if its only connected subspaces are
one-point sets.

Theorem 0.3. The Cantor set is totally disconnected, and it does not have the
discrete topology.

Proof. First, we notice that the subsets Cn are not connected; for each n, the set
Cn is the union of disjoint closed intervals. The intervals that make up Cn each
have length 1

3n−1 . For x, y ∈ C there exists an N ∈ N such that 1
3N−1 <| x − y |.

This means x and y must be in different closed intervals inside CN . Therefore the
only connected subspaces are one point sets. This shows that the Cantor set is
totally disconnected.
To prove that the Cantor set does not have the discrete topology, we show that it
has a limit point. Elements in C are of the form 2a1

3 + 2a2

32 + 2a3

33 + 2a4

34 + ...
where the ai’s are either 1 or 0. There exists a sequence of endpoints in C which

converges to 1
4 : {xn =

∑n
k=1

2
32k
}. We have that xn =

∑n
k=1

2
32k

=
1− 1

9
n

4 and
1
9

n → 0, so
1− 1

9
n

4 → 1
4 . Therefore 1

4 s a limit point in C. We conclude that the
Cantor set is totally disconnected and does not have the discrete topology. �
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The Cantor set is also useful in its own right, aside from its role as a frequent
counterexample. The set can be used to prove some surprising results, such as the
existence of a space-filling curve in [0, 1]2. One would not anticipate that a curve,
a clearly one dimensional object, could fill a higher dimensional space. By curve in
a space X we mean a continuous function [0, 1]→ X.

Definition 0.4. A space-filling curve is a curve whose range contains the entire
2-dimensional unit square.

Theorem 0.5. There exists a surjective, continuous function F : [0, 1]→ [0, 1]2.

Proof. Let h : C → [0, 1] be the surjective continuous function defined by h(x) =∑∞
n=1

an

2n where x =
∑∞

n=1
2an

3n ∈ C for an ∈ {0, 1}. From h, we get a continuous

function H from C×C onto [0, 1]× [0, 1] = [0, 1]2 defined as H(x, y) = (h(x), h(y)).
Since the Cantor set is homeomorphic to the product C ×C, there is a continuous
bijection g from the Cantor set onto C × C. The composition f of H and g is a
continuous function that maps the Cantor set onto the entire unit square.
From there we can extend f linearly to a continuous function F whose domain is
[0, 1] by defining the extension part of F on (a, b) to be the line segment within
[0, 1]2 connecting f(a) and f(b) where each (a, b) is a deleted open interval of the
Cantor set. This proves the existence of a surjective, continuous function from the
unit interval to the unit square. �


